Abstract

The present study aimed to conceptualize a model to examine the potential factors that lead youth to participate in exercise. The conceptual model was developed based on previously tested exercise commitment model (Alexandris, Zahariadis, Tsorbatzoudis, & Grouious, 2002) with additional factors of self-efficacies (i.e., coping, task, and scheduling). Structural equation modeling was performed to test the model and the findings showed that the proposed model had fair fit with the data (CFI = .962, TLI = .901, RMSEA = .09). The results indicated that investment (β = .532) and two self-efficacies [i.e., scheduling (β = .233) and task (β = .223)] were the three significant determinants for exercise commitment for youth in 7th and 8th grade (p < .001). Further, scheduling self-efficacy (β = .273, p < .005) and exercise commitment (β = .235, p < .05) contributed significantly positively on the stage of exercise participation.

Key Words: exercise, commitment, self-efficacy, youth, stage of participation.
Fitness industry has been experiencing significant growth (Cotton, 2008) in terms of the magnitude of industry and its membership. Currently, however, most of the clubs are struggling with a significant dropout rate of its members. According to Bates (2008), about 50-to-60% of members discontinue visiting the club within the first six months and only 13% of Americans are active members of health club (Active Network, Inc., 2007). Even though many people recognize the importance of maintaining good health, 65% of adults over 20 years old are overweight (Tharrett & Peterson, 2006). As the response to this retention-related problem and the discrepancy between individuals' perception and reality of health, efforts have been given to understand the factors that lead people to continue exercise participation.

Commitment and Continued Participation

While many social, psychological, cultural and situational factors have been suggested as the leading factors for continued participation, one such factor that has been applied prominently to explain individuals’ persistence in an action is commitment (Scanlan, Carpenter, Schmidt, Simons, & Keeler, 1993). Commitment has been defined as a psychological state that represents the desire or resolve to continue participation (Scanlan et al., 1993), which also represents individuals' specific intention to behave. It has been noted that commitment represents attitudinal loyalty toward particular activity in exercise (Park & Kim, 2000) and a predictor for behavioral loyalty (Park, 1996). Therefore, it has been recognized as a crucial factor by both practitioners and academicians, as it represents resistance to change to alternatives (Funk & James, 2006), which reflects the attachment of participants to the certain activity or program (Casper, 2007).

Scanlan et al. (1993) proposed the Sport Commitment Model whereby commitment is a function of attraction (i.e., enjoyment), alternatives (i.e., involvement alternatives), and restraining forces (i.e., social constraints, investments, and involvement opportunities). According to this model, when individuals have greater enjoyment, personal investment, social constraints (i.e., feelings of obligation to continue the activity due to others), involvement opportunities (i.e., values accrued only from being involved in the activity) and less attractive alternatives, they will more likely have higher levels of commitment. By testing this model in the context of youth sports, the authors concluded that sport enjoyment and personal investment were the most salient predicting factors for sport commitment.

While this seminal work of Scanlan et al. (1993) enhanced our understanding of what makes people continue participation in sports, it is also acknowledged that the model is open to change (e.g., modifications and additions) with further testing in various contexts of sport (Scanlan et al.,
Inclusion of further predictors of commitment may help improve the predictive power of this model. To date, a number of studies have extended the sport commitment model in terms of addition of predictors and examination of other sports (e.g., Carpenter et al., 1993; Casper, Gray, & Stellino, 2007; Choosakul, Vongjaturapat, & Harmer, 2009; Crocker, Hoar, McDonough, Kowalski & Niefer, 2004; Scanlan, Russell, Beals, & Scanlan, 2003; Scanlan, Russell, Magyar, & Scanlan 2009; Weiss, Kimmel, & Smith, 2001). Even though previous studies have examined various sports, since the main focus was given to athletes of organized competitive sport (e.g., tennis, soccer, rugby, basketball and etc.) the application of commitment to understanding of participation and discontinuation has been limited. In regard to sport commitment model, it has been suggested that not only the participation in specific sport programs, but also the participation in general should be examined (Scanlan et al., 1993).

Exercise Commitment

A study conducted by Alexandris et al. (2002) replied the necessity of commitment study beyond the organized sport participation. Admitting the importance of commitment in exercise behavior, they applied the sport commitment model for the first time to the context of exercise and fitness in Greece. They demonstrated the validity and applicability of sport commitment model to the fitness participation (CFI = .948 ~ .959, RMSEA = .059 ~ .052) and the factors of commitment model (i.e., investment, constraints, opportunities, enjoyment) were found to be significant predictors of exercise commitment. Since alternative opportunities, which were proposed to have negative effects on exercise commitment, had issues of comprehending the concept of mutually exclusive alternatives and the weak association with sacrificing participation (Scanlan et al., 1993), this variable was excluded from the exercise commitment model. Alexandris et al.'s (2002) successful application proved that the exercise commitment in a particular fitness club could be explained by the sport commitment model, however their application was limited to those particular fitness club members and cannot be extended to the general exercise participant. In regards to exercise and fitness, general exercise participation is still needs further examination. Figure 1 depicts Alexandris et al.'s (2002) exercise commitment model and theorized influence of components on exercise commitment.

What is recognized, however, as a void in commitment research is that even though the significance of commitment has been acknowledged by many scholars, this psychological attachment to an activity does not represent direct spending or participation (Casper, 2007). Critics have contended that attitudinal loyalty is conceptualized by future intentions (e.g., Park &
Kim, 2000) and does not explain actual behavior (Söderlund, 2006; Zins, 2001). Furthermore, little is known about the actual impact of psychological commitment (i.e., exercise commitment) on participation and the relationship between the two constructs. Therefore, in this regard, expanding the commitment model to predict actual behavior and examining the potential factors that could enhance our understanding of the relationship between exercise commitment and participation were necessitated.

Self-efficacies and Exercise

This study incorporated self-efficacy as the prospective predictor within the previously tested exercise commitment model (Alexandris, et al, 2002). Self-efficacy refers to an individual's confidence in his or her ability to engage in behavior that will yield desired outcome (Bandura, 1986). Self-efficacy has been recognized as one of the most prominent variables to understand human behavior in social science research, especially framed within the social cognitive theory (Bandura’s, 1986). Social cognitive theory is the most frequently used framework to explain individuals' continued exercise behavior and has explained that individuals continue an activity in which they feel enjoyment and confidence and vice versa (Taylor, Blair, , Cummings, Wun, & Malina, 1999). To date, in the context of exercise behavior, the role of self-efficacy has been touted by many as one of the paramount factors leading to exercise participation. Furthermore, individuals reporting high self-efficacy are more likely to continue exercising (e.g., DiLorenzo, Stucky-Ropp, Vander Wal, & Gotham, 1998; Rodgers & Sullivan, 2001; Tyler et al., 1999). Previous studies utilizing commitment model as its framework, however, have not included self-efficacy as a potential predictor for the commitment. Therefore, the inclusion of self-efficacy variables in the commitment model is meaningful as it may play a significant role in predicting exercise commitment.
In this study, through the review of self-efficacy literature in exercise behavior, we applied a multi-dimensional concept of self-efficacy as the potential determinants in the exercise commitment model. Previous research has indicated that two self-efficacy dimensions (i.e., task, coping) are deemed important for exercise participation (e.g., Maddux, 1995; Rodgers, Hall, Blanchard, McAuley & Munroe, 2002; Rodgers & Sullivan, 2001). Task efficacy refers to the state of one’s confidence to perform a task in exercise (e.g., following the instructions) and coping efficacy refers to one’s confidence in the ability to overcome challenging conditions (e.g., bad mood, feel tired) to perform the task. In addition to task and coping efficacies, scheduling efficacy also has been recognized as an important dimension of efficacy for continued exercise participation (e.g., Rodgers & Sullivan, 2001). Scheduling efficacy refers to one’s confidence to manage time for the participation. According to Rodgers and Sullivan (2001), all three efficacies were highly correlated with the frequency of exercise participation, which implied the prospective influence of efficacies on desire to continue participation (i.e., exercise commitment). Further, the role of efficacies (i.e., task, scheduling) on intention to exercise and actual exercise participation are also well reported by Rodgers et al. (2002); they found the direct effect of task and scheduling efficacies on behavioral intention and direct effect of scheduling efficacy and intensity on actual exercise behavior.

Purpose and Model Specification

The purpose of this study is to conceptualize a model to examine the potential factors that lead youth to participate in exercise. As stated above, the theoretical and practical significance of commitment to exercise has been acknowledged by many scholars. However, little is known about the commitment in regard to exercise participation. Previous research has suggested that applying a previously tested theoretical model (i.e., commitment model) with addition of potential predictors would aid in our understanding of exercise participation. Therefore, based on the review of literature, we conceptualized a model grounded in the previously tested exercise commitment model (Alexandris et al., 2002) with the addition of three self-efficacy sub-dimensions (i.e., coping, task, and scheduling).

Within the proposed exercise commitment model, we hypothesized that enjoyment, investment, social constraints, and the self-efficacy sub-dimensions (i.e., coping, task, scheduling) will increase commitment to exercise in youth. We also posited that exercise commitment will have a significant positive relationship with participation. Furthermore, a direct positive effect of scheduling self-efficacy on exercise participation was hypothesized.
In addition to examining the general exercise participation, an area that has not been tested within previous research, we aimed to extend the application of the exercise commitment model to adolescents, instead of those specific members of fitness clubs and/or the athletes group whom targeted in previous studies (e.g., Alexandris et al., 2002; Casper, 2007). In the context of this study, exercise participation in general for this target population does not refer to participation in specific exercise/fitness program. Thus, the concept of involvement opportunities, which refer to the anticipated value that the participants may lose if they drop out from a certain sport or exercise program, deemed unsuitable for our research question. Further, supposition of terminating or quitting participation in general exercise in one’s life would neither be realistic nor capture the exact value of involvement opportunity. Therefore, the involvement opportunity construct was excluded from proposed model. The hypothesized model and the directions of influence of each factor are depicted in Figure 2. The following part describes the method and instrument utilized in this study.

Figure 2: Hypothesized exercise commitment model with direction of influence of each factor.

Method

Sample and Procedure

The data were collected from middle school students participated in physical education (PE) class, located in Midwestern city of the U.S. The school was contacted due to the researcher’s convenience of data collection in terms of the accessibility and efficiency (e.g., time, distance, and cost). To
conduct the survey, we first obtained the permission from school and a consent form of participation was sent to the legal guardians of the students. Approximately 300 students in 7th and 8th grade, who were enrolled in physical education class, were contacted and of whom 217 (72.3%) students agreed to participate in the survey. A set of paper-based self-administered questionnaires were distributed during the PE class by two graduate assistants.

Instrumentation

The purpose of this study was to test the relationship between the factors in the proposed exercise commitment model (i.e., enjoyment, investment, social constraint, coping-, task-, scheduling-efficacies) and exercise commitment and participation.

Sport Commitment Scale (Scanlan et al., 1993) has been used in many commitment studies (e.g., Alexandris et al., 2002, 2004; Scanlan et al., 1993; Casper, 2007; Weiss & Weiss, 2007; Zahariadis, Tsorbatzoudis, & Alexandris, 2006) in various contexts of sport including exercise (e.g., tennis, fitness, gymnastics). Furthermore, this scale has been proven to be valid (Cronbach's $\alpha = 8.5 \sim 8.8$) for both of youth (e.g., Zahariadis et al., 2006) and adults sample (e.g., Alexandris et al., 2002). Therefore, sport commitment scale (Scanlan et al., 1993) was chosen and modified to the context of exercise to measure commitment in adolescents. The exercise commitment scale consisted of four items; "I am dedicated to participating in exercise", "It would be hard for me to quit exercise", "I am determined to keep exercising", and "I would be willing to do a lot to keep exercising". As commitment exists in different strengths (e.g., Abrahamsson, 2001), it is legitimate to treat commitment as a continuous variable rather than a dichotomous (Abrahamsson, 2001; Johnson, 1973; Kiesler, 1971). Therefore, the exercise commitment scale was measured using a 5-point Likert-type scale, anchored by 1 = strongly disagree and 5 = strongly agree. In addition to exercise commitment, enjoyment (5-items), personal investment (3-items), and social constraint (4-items) scales used in sport commitment model (Scanlan et al., 1993; Alexandris, 2002) were modified into exercise context (Cronbach's $\alpha = .76 \sim .90$).

Exercise participation was measured by asking different stages of change in exercise participation (cf. Booth et al., 1993). Purpose of measuring different stages of exercise participation is to examine the effect of different commitment levels on actual behavior and level of self-efficacy. As noted earlier, because exercise commitment is a continuous concept, exercise participation also should be treated as continuous concept, rather than "not participate" or "participate". Further, the scale incorporates the concepts of
intention, duration, and regularity of participation, which would aid our under-
standing on both attitudinal and behavioral outcome of exercise commit-
ment. Therefore, five different stages of exercise participation (Booth et al.,
1993) were applied into five stages of exercise participation; Pre-contem-
plation stage (i.e., "I currently do not exercise"), Contemplation stage (i.e., "I
currently do not exercise, but intend to do so in the future"), Preparation
(i.e., "I exercise irregularly"), Action (i.e., "I exercised regularly for less than 6
month"), and Maintenance (i.e., "I have exercised regularly for 6 month or
more").

Self-efficacies were measured by utilizing of Rodgers and Sullivan's
(2001) task, coping and scheduling self-efficacy scale (Cronbach’s
$\alpha = .72 \sim .88$). Task efficacy was measured using 3-items to one’s confidence
using the following questions: can you –"follow directions from an instructor",
–"pace yourself during the activity to avoid overexertion", and –"perform the
required movements". Coping efficacy was measured by 3-items: how confi-
dent are you that you can exercise when you –"are tired", –"are in bad
mood", and –"feel you don’t have the time". In the same way, scheduling
efficacy was measured using 3 items: can you –"arrange your schedule to
to exercise regularly no matter what", –"overcome obstacles that prevent you
from participating regularly", and –"make up times when you missed your
regular exercise session". All the efficacies were assessed using a 5-point
Likert-type scale anchored by 1 = not confident, 5 = very much confident.
The means of each 3-item efficacy scale were used for self-efficacies. The
means of items of responses for each variable were computed and used in
the structural equation modeling analysis using MPLUS 6.12.

Result

A total of 217 completed questionnaires were deemed usable for data
analysis (N = 217). The respondents ages ranged from 12 to 17 years of
age ($M = 13.46$, $SD = .89$), and indicated comparatively equal distribution in
terms of the gender (male = 48.7%, female = 51.3%) and grade level
(7th = 46.6%, 8th = 53.4%). In terms of ethnicity, the majority of participants
were Caucasian (85.6%). The descriptive statistics indicated that the sample
exhibited high level of participation in exercise ($M = 4.11$, $SD = 1.13$). More-
over, 99 respondents (45%) indicated that they were in the "Maintenance"
state of exercise participation (i.e., exercised regularly for 6 month or more)
and fairly enjoy exercise ($M = 4.22$, $SD = .99$).

The test of internal consistency for all constructs were deemed reliable
(range $\sim .73 \sim .92$). As expected, and consistent with previous research (e.g.,
Scanlan et al., 1993), the test of bivariate relation between the study vari-
ables showed a statistically significant level of positive relation between each variables with exercise commitment, except social constraint. This finding may indicate that a greater investment on exercise is highly correlated with exercise commitment ($r = .759$, $p < .001$). In addition, enjoyment was significantly related to high exercise commitment ($r = .585$, $p < .001$). The non-significant correlation of social constraint with commitment may be due to the low mean score of 2.1 on the 5-point Likert scale. Furthermore, as hypothesized, the self-efficacy sub-dimensions (i.e., coping, task, scheduling) were significantly correlated with greater exercise commitment ($p < .001$). Detailed information of descriptive statistics, internal consistency and the bivariate relations of each construct are presented in Table 1.

Table 1. Mean, Standard Deviation, Cronbach’s α, and Bivariate Relations of Study Variables.

<table>
<thead>
<tr>
<th>Study Variable</th>
<th>Mean</th>
<th>SD</th>
<th>α</th>
<th>SEP</th>
<th>EC</th>
<th>CSE</th>
<th>TSE</th>
<th>SSE</th>
<th>ENJ</th>
<th>INV</th>
<th>SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage of Exercise Participation (SEP)</td>
<td>4.11</td>
<td>1.13</td>
<td>–</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercise Commitment (EC)</td>
<td>3.51</td>
<td>1.07</td>
<td>.89</td>
<td>.371***</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coping Self-efficacy (CSE)</td>
<td>3.00</td>
<td>1.06</td>
<td>.73</td>
<td>.247***</td>
<td>.47***</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task Self-efficacy (TSE)</td>
<td>3.82</td>
<td>.87</td>
<td>.80</td>
<td>.264***</td>
<td>.581***</td>
<td>.469***</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scheduling Self-efficacy (SSE)</td>
<td>3.24</td>
<td>1.00</td>
<td>.77</td>
<td>.378***</td>
<td>.613***</td>
<td>.588***</td>
<td>.555***</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enjoyment (ENJ)</td>
<td>4.22</td>
<td>.99</td>
<td>.92</td>
<td>.221**</td>
<td>.585***</td>
<td>.344***</td>
<td>.463***</td>
<td>.375***</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investment (INV)</td>
<td>3.45</td>
<td>1.10</td>
<td>.78</td>
<td>.292***</td>
<td>.759***</td>
<td>.425***</td>
<td>.478***</td>
<td>.509***</td>
<td>.723***</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Social Constraints (SC)</td>
<td>2.18</td>
<td>1.08</td>
<td>.78</td>
<td>.057</td>
<td>.12</td>
<td>.118</td>
<td>.065</td>
<td>.124</td>
<td>.113</td>
<td>.218***</td>
<td>1</td>
</tr>
</tbody>
</table>

Note. **$p < .01$, ***$p < .001$.

A structural equation modeling analysis was performed to assess the hypothesized influence of six predictors (i.e., enjoyment, investment, social constraints, coping efficacy, task efficacy, and scheduling efficacy) on commitment and the impact of exercise commitment and scheduling self-efficacy on participation. Regarding the test of model fit, although chi-square test of the model was significant [$\chi^2 = 13.691$ (df = 5, $p < .05$)], other tests of model fit indices (CFI = .962, TLI = .901, RMSEA = .09, SRMR = .03) indicated that the model was a mediocre fit for the data (Hooper, Coughlan, & Mullen, 2008; MacCallum, Browne, & Sugawara, 1996). While modifying the relationship the proposed relationships between constructs may enhance the model fit, the proposed model was considered sufficient to test the previously theorized relationships between the constructs.
Figure 3 depicts the results of the structural equation modeling analysis and the hypothesized relationships between variables. Among six hypothesized relationships between each determinant of exercise commitment, investment, task self-efficacy, and scheduling self-efficacy were found to be statistically significant. For our sample, personal investment on exercise was the most salient factor in terms of predicting exercise commitment ($\beta = .532$, $SE = .09$, $p < .001$) when compared with scheduling self-efficacy for exercise ($\beta = .233$, $SE = .059$, $p < .001$) and task self-efficacy ($\beta = .223$, $SE = .064$, $p < .001$). However, there were no significant relationships for enjoyment ($\beta = .025$, $SE = .064$, $p = .701$), social constraints ($\beta = -.043$, $SE = .41$, $p = .295$), and coping self-efficacy ($\beta = .022$, $SE = .051$, $p = .066$) with exercise commitment. In terms of theorized relationship with exercise participation, the results supported our hypotheses by indicating that exercise commitment had a significantly positive impact on stage of exercise participation ($\beta = .235$, $SE = .09$, $p = .01$). Further, the direct effect of scheduling self-efficacy on exercise participation was shown to be significant ($\beta = .273$, $SE = .096$, $p = .01$), which indicated that the individuals with high scheduling self-efficacy for exercise are in higher stage of exercise participation.

![Figure 3: Path coefficients for exercise commitment model with self-efficacies and exercise participation.](image)

Discussion

The purpose of this study was to extend the application of the sport commitment model to youth in the context of exercise. The findings of structural
equation modeling indicated that personal investment was the most prominent factor that leading to adolescent commitment to exercise. This significance of personal investment as a determinant of commitment supports previous findings (e.g., Alexandris et al., 2002; Casper et al., 2007; Weiss et al., 2001). Moreover, this finding may suggest that when individuals have more willingness to invest their time, money, and effort in to exercise, they are more likely to continue participating in exercise. In turn, this result also advocated for the importance of ability to overcome time constraints in exercise commitment (Alexandris et al., 1993).

Interestingly, however, enjoyment and social constraints did not contribute to increase exercise commitment for the youth participants in this study, which implied that desire to continue exercise for youth depends more on how many resources (i.e., time, money, effort) they can invest in exercise rather than how much they enjoy it — or how much it pleases others (e.g., parents, peers). While the insignificance of social constraints has been found in previous commitment studies (e.g., Alexandris et al., 2002; Casper et al., 2007; Zahariadis et al., 2006), the lack of association of enjoyment with commitment is quite different from the most studies. One possible explanation for this discrepancy may be attributed by the characteristic of our sample. According to Craike, Symons, and Zimmermann (2009), youth in secondary school, especially in 7th and 11th grades, have varying interests due to increased school work, less time to relax, more opportunities in other social and/or leisure activities than they had in primary school. Thus, the youth samples (i.e., 7th and 8th graders) used in this study are in this transitional period in which they are experiencing of competing priorities by trading-off those unobligated options (i.e., exercise), which they may "want to" but not "have to". In this regard, although the youth in this study indicated high exercise enjoyment (M = 4.22), other priorities, which they have to do, might deter them from being committed to exercise.

Another aim of this study was to apply multi-dimensional self-efficacy factors as additional predictors of commitment. This was done in order to enhance our understanding of continued exercise participation. As expected, the significant impact of each task self-efficacy and scheduling self-efficacy on exercise commitment was supported by the data. This suggested that when individuals have more confidence on performing a task during exercise, they are more likely to remain in the program. Furthermore, our findings indicate that individuals who believe that they can arrange their schedule to exercise regularly are more eager to keep exercising.

In terms of coping self-efficacy, unexpected results were found. The results indicated that an individual's ability to overcome psychological or physical barriers (e.g., mood, tired) is not a significant factor related to their desire to participate in exercise. This finding differs from previous studies in which the coping self-efficacy played a significant role in increased exercise
participation of adults (e.g., Rodgers & Sullivan, 2001; Simonavice & Wiggins, 2008). One possible explanation for our finding may be attributable to the nature of general exercise participation. Unlike other team sport or specific exercise/fitness program participation, general exercise participation is more voluntary, unobligated, and self-regulatory in terms of participation. Thus, one could easily skip exercising without any punishment. However, it should be noted that this is not a sign of decrease in exercise commitment or discontinuation of participation, rather this could be a temporal situation one may overcome shortly. For example, an individual who is committed to exercise (e.g., walking, bicycling jogging) may not want to keep exercise when he/she is tired, in bad mood, and/or feel they don’t have time. However, they will continue exercise when these temporal barriers disappear.

In addition to direct effect of scheduling self-efficacy on exercise commitment, we also found significant direct effect of scheduling self-efficacy on individuals' exercise participation level (i.e., Pre-contemplation, Contemplation, Preparation, Action, and Maintenance). This result suggests that one's perceived confidence in managing their schedule is not only sufficient, but a necessary condition for maintaining regular exercise. As suggested by Rodgers et al. (2002), scheduling self-efficacy showed significant behavioral function on exercise participation, but in this study the attitudinal function of scheduling efficacy as the determinant of exercise commitment was also supported.

The present study also aimed to examine the predictive power of commitment on the actual exercise participation level. Our finding suggests that - in regard to the adolescent sample used in this study - greater exercise commitment appears at higher stage of exercise participation. Therefore, exercise commitment can determine the actual exercise participation level in both attitudinal (i.e., intention) and behavioral (i.e., duration and regularity) aspect. Therefore, our finding supported the general assumption of the central role of exercise commitment on actual participation.

Implication and Future Research

The present study posited its significance in two facets. First, through modification of previously adopted exercise commitment model (Alexandris et al., 2002) with additional factors (i.e., efficacies), this study not only provides the insights into the factors that contribute to exercise commitment, but also extends our understanding of actual exercise participation. Furthermore, this is the first known study to apply the exercise commitment model to youth in a general exercise context. The findings from this study support efforts to promote physical activity among youth. Therefore, the practitioners should consider the factors enhance the exercise commitment (e.g., invest-
ment, task and scheduling efficacies) when developing physical activity-related programs targeted at youth participants. As discussed, the unique characteristics of youth in secondary school level (i.e., transitional period), balancing between mastering-oriented and competing-oriented, voluntary and compulsory should be included in the consideration set.

As noted by Casper (2007) the factors that contribute participant commitment are unique in sport and thus possibly in exercise. Therefore, further research is needed to refine the constructs of the commitment model to better our understanding of exercise participation and discontinuation. Also, extending the application of commitment model to other target population and other areas of sport and exercise would be essential. While significant relationships among the variables were found based on theoretical approach, the small sample size limited our analysis to those construct as single indicators, which possibly makes the relationship between the latent variables unclear. Future studies that examine the relationship among antecedents of commitment and its outcomes should be performed with a larger sample size as well as possible mediation effect. Furthermore, exercise commitment is a continuum, which changes overtime as evaluation to the determinants (e.g., attraction, alternatives) change (Johnson & Rusbelt, 1989). Therefore, rather than using cross-sectional data, longitudinal approaches to the youth exercise commitment and participation would be desirable.

References

Address for correspondence:
Dae Yeon Kim
Department of Kinesiology
Indiana University – Bloomington
47405, Indiana, US
e-mail: kimdae@indiana.edu